Muscle Activation in Cruciate Disease

CAROLINE ADRIAN PT, PHD, CCRP
DIRECTOR, REHABILITATION SERVICES
VCA ANIMAL HOSPITALS, LOS ANGELES, CA, USA

VCA VETERINARY SPECIALISTS OF NORTHERN COLORADO, LOVELAND, CO, USA
Canine Stifle Joint

- ‘Knee’
- Formed by 3 articular surfaces
 - Femur, tibia and patella
- Joined by series of complex ligaments
 - Focus: Cranial cruciate ligament
- Biomechanics
 - Stability: cranial / caudal cruciate, collateral ligaments, menisci
 - Resists motion in all planes

Copyright Caroline Adrian, 2016
Cranial Cruciate Ligament (CCL) Rupture

- Common cause of pelvic limb lameness

- 1.32 billion spent on medical and surgical management in dogs
 Wilke VL, et. al., *JAVMA*, 2003

Slocum BS, Slocum TD, *Vet Clin N Am*, 1993

Copyright Caroline Adrian, 2016
Bilateral CCL Rupture

- Contralateral CrCL rupture
 Vilensky, JA, et. al., J Orthop Res, 1994
 Rumph PF, et.al., Vet Surg, 1995
 - 37-48% 16 months after initial Dx
 Doverspike M, et. al., JAAHA, 1993; Buote NJ, et. al., VOS, 2008
 - 1/3 within 8 months after initial rupture
 Doom M, et.al., Vet Immun & Histopath, 2008

- Compensatory patterns adopted
 - Uncoordinated muscle activity
 - Cranial shift in COM
 - Increased thoracolumbar flexion
 - Increased GRF in thoracic limbs

Photo courtesy of Dr. Robert Taylor

Copyright Caroline Adrian, 2016
Canine Example - CrCLR

Intact CrCL

Deficient CrCL

Videos courtesy of Dr. Scott Tashman

Copyright Caroline Adrian, 2016
Pathogenesis – CCL Disease

- **Biomechanical stresses**
 - **Ligamentous strain**
 - Abrupt / traumatic
 - Slow, repetitive degeneration
 Hayashi K, et.al., *J Am An Hosp Assoc*, 2004
 - **Conformational abnormalities/joint geometry**

- **Signalment**
 Breed, gender, age, body weight

- **Immune-mediated destruction of ligament**

Photo courtesy of Dr. Robert Taylor

Copyright Caroline Adrian, 2016
Effects of CCL Rupture

- **Joint instability – human & canine**
 - Shift in joint contact area
 - Increased joint contact forces
 - Increased reliance on muscles

- **Decreased weightbearing (ex: peak vertical force)**
 - DeCamp CE, et. al., *AJVR*, 1996

- **Increased stifle flexion**

- **Osteoarthritis**

- **Joint effusion/muscle inhibition in humans (canine?)**

- **Muscle weakness in humans (canine?)**
Motor Control

- **Muscle activation – role in joint compression and stability**

- **Human ACLD: role of muscle activity in supporting joint stability**
 - Asynchronous timing of mm. onset, timing and amplitude
 - Affects joint stability, stifle kinematics, joint loading
 - Inefficient muscle recruitment – increase periarticular structures to mechanical injury/failure

Copyright Caroline Adrian, 2016
• Normally - during stretch, mechanoreceptors in peri-/intra-articular structures, increase firing of alpha-motor neuron, increasing muscle stiffness/stability
Concurrent regulation of muscle spindle sensitivity to stretch via gamma motor neuron system

ACL injury = loss joint afferent signaling, decreased gamma-motor neuron signaling, reduced mm. activation = decrease joint stability
Knowledge Gap

- Progression of CCL rupture
 - Subclinical disease

- Unknown alterations in timing and magnitude of muscle contraction following a CCL injury/rupture

- Kinetics / Kinematics

- Compensatory gait patterns

- Lack of clinical objective outcome parameters

- Poor model of natural disease progression
 - CCL transection limitations

Copyright Caroline Adrian, 2016
Purpose

Characterize alterations in:
- Electromyography (EMG) patterns
- Kinetics and kinematics
- Ipsilateral/contralateral pelvic limbs
- Monopolar radiofrequency energy (MRFE)-induced CCL degeneration and subsequent rupture
Specific Aim

Assess subclinical, acute, chronic phases of CCL disease

- Altered patterns of muscle activity
- Progression of altered GRF and kinematic patterns
- Development of compensatory gait patterns
Hypotheses

- **H0**: significant alterations in muscle onset, activation duration and amplitudes will be measured in the VL, BF and MG at all time points post-injury and rupture, compared to baseline values.

- **H1**: subtle, adaptive kinematic and kinetic gait changes are expected in CCL degeneration, prior to actual CCLR, due to pain, inflammation, and altered proprioception.
Study design

- Randomized, repeated measures design
- N = 6 female hound dogs (age: 1-3.7 years)
- Unilateral MRFE-induced CCL injury
- Assess changes in kinetics and kinematics—pelvic limbs
- Assess EMG and outcome parameters in bilateral pelvic limbs

- 6 time periods;
 - Pre-injury (Baseline)
 - Subclinical: 2 and 4 weeks post MRFE-induced CCL injury
 - 4, 8 and 16 weeks post CCL rupture
MRFE Model

- Mechanical failure with intact ligamentous fibers (Noyes F, 1977)

- Produces gradual loss of stifle stability
 - 25-40% intact fibers at 16 weeks post CCLR in 4/6 dogs
 - Clinical: graded as 2 = complete rupture
 - ‘complete’ rupture = 10-12 mm
 - ‘partial’ rupture = 5-8 mm

- Lopez (2003) = 55 +/- 3 days
• Vastus Lateralis
 ○ Stifle extensor and stabilizer in stance

• Biceps Femoris (caudal)
 ○ Stifle flexor, hip extensor, tarsal extensor and stabilizer in stance
 ○ Active just before paw strike

• Gastrocnemius (medial)
 ○ Tarsal extensor, stifle flexor and stabilizer in stance
 ○ Medial head active 73% of stance (lateral head not reported Goslow GE, et al., *J Exp Biol*, 1981

Copyright Caroline Adrian, 2016
Kinetics

- Study of forces that cause movement
Models of CCL Rupture

- **Surgical transection**
 - Acute model
 - Variable OA severity
 - Not natural disease progression

- **Monopolar Radiofrequency Energy (MRFE)**
 - Thermally induced
 - Slow, progressive model
 - Simulates naturally occurring disease
 - CCL rupture 55 days post surgery
Kinematics

- Study of motion (sagittal plane)
Electromyography (EMG)

• Measure of muscle activity
EMG
Example, processed EMG tracing

Biceps Femoris

% Stance 1: -15.00%
Duration of BF: 0.17 sec
Maximum Amplitude: 40.44 μv

Copyright Caroline Adrian, 2016
Statistical Analysis

- Repeated measures ANCOVA
- \(N = 5 \)
- Assess changes from baseline values in kinetic, kinematic and EMG parameters between treated and untreated dogs
- Over 6 time periods
 - Independent variables
 - Age
 - Injured limb
 - Treated and untreated
 - Data collection time points
 - Baseline, subclinical, acute and chronic
 - Dependent variables
 - Outcome parameters
- LS Means - individual comparisons among the interaction of time \(x \) injured limb

Copyright Caroline Adrian, 2016
Results

- **MRFE-induced injury: weeks to rupture**
 - Week 1 (2 dogs)
 - Week 6 (3 dogs)
 - Week 15 (1 dog)
 - Covariate: no difference

- **N = 5**

- **High EMG variability**
 - Low sample size
 - High standards of deviation

- **Qualitative descriptions of EMG**
Results - Post MRFE

Kinetics
- Tx/Untx: no sig diff

Kinematics
- UnTx: Decreased avg hip joint ROM by 4-5°
- ‘Stiffer’ joint

<table>
<thead>
<tr>
<th>Time</th>
<th>Treated</th>
<th>Untreated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>26.7 ± 1.5</td>
<td>24.5 ± 1.5</td>
</tr>
<tr>
<td>Post MRFE-Induced Injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>22.6 ± 1.7*</td>
<td>25.7 ± 1.7</td>
</tr>
<tr>
<td>Week 4</td>
<td>22.2 ± 1.7*</td>
<td>25.1 ± 1.7</td>
</tr>
</tbody>
</table>

*Significant difference
Results - Post CCL Rupture

Kinetics
- Tx: Decreases in majority of parameters post CCLR

Kinematics
- Tx (compared to UnTx):
 - Incr avg hip joint ROM
 - Incr tarsal extension (up to 19°)
- UnTx:
 - Increased stance time 6%
 - Increased stifle flexion (up to 20°)
 - Increased tarsal flexion (up to 14°)
TREATED LIMB

Vastus Lateralis Activation Pattern
TREATED LIMB

Biceps Femoris Activation Pattern

Copyright Caroline Adrian, 2016
TREATED LIMB

Gastrocnemius Activation Pattern

Copyright Caroline Adrian, 2016
UNTREATED LIMB

Vastus Lateralis Activation Pattern
UNTREATED LIMB

Biceps Femoris Activation Pattern

Copyright Caroline Adrian, 2016
UNTREATED LIMB

Gastrocnemius Activation Pattern
EMG

Subclinical Phase*

<table>
<thead>
<tr>
<th></th>
<th>Treated Limb</th>
<th>Untreated Limb</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>D/↓</td>
<td>D?/-</td>
</tr>
<tr>
<td>BF</td>
<td>D/↓</td>
<td>D/↓</td>
</tr>
<tr>
<td>MG</td>
<td>D/↓</td>
<td>E/↑</td>
</tr>
</tbody>
</table>

Post CCL Rupture*

<table>
<thead>
<tr>
<th></th>
<th>Treated Limb</th>
<th>Untreated Limb</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>E/↑</td>
<td>E/↑</td>
</tr>
<tr>
<td>BF</td>
<td>E/↑</td>
<td>D/↓</td>
</tr>
<tr>
<td>MG</td>
<td>E/↑</td>
<td>E/↑</td>
</tr>
</tbody>
</table>

*No significance; N = 5

Copyright Caroline Adrian, 2016
Discussion

• Novel - neuromuscular contributions to stifle stability

• Qualitative analysis of trial averaged EMG graphs suggest a relationship between neuromuscular function and CCL injury / subsequent rupture despite lack of significance

• Lack of statistical significance
 • Patient to patient EMG variability
 • Small sample size
Discussion

• Transection model of CCL rupture
 • Immediate stifle destabilization
 • Produces large between-dog kinematic variability in joint angle timing and magnitudes (up to 9°) Korvick DL, et.al., J Biomech, 1994; Tashman S, et.al., J Orthop Res, 2004

• MRFE-induced CCL injury model
 • More consistent stifle flexion changes of 3-4° in the untreated limb
 • Suggests a less variable compensatory gait pattern occurs with gradual destabilization
 • Better replicate degenerative process/gradual CCLR
 • Provide opportunities to gradually modify movement strategies?
 • Clinical relevance of differences in kinematic changes between the two models requires further research
• **Post MRFE**
 - VL immediate response to locomotor adaptations = delayed activation in both limbs/decreased activation duration.

• **TREATED LIMB**
 - Delay due to post op effusion within the stifle joint
 - Cause increased intraarticular pressure Strand E, et.al., Equine Vet J, 1998

• **UNTREATED LIMB**
 - Need additional studies to provide a better understanding of these findings

Copyright Caroline Adrian, 2016
Discussion - VL

- Compensatory strategies adapt with time?
- **Post CCLR**
 - **TREATED LIMB**
 - VL activated earlier
 - Allow better shock absorption to absorb higher loads
 - Activate sooner - increase stiffness in preparation for weight acceptance in an unstable joint
 - Stiffening (due to muscular co-contraction) plays role in joint stabilization
 - **UNTREATED LIMB**
 - VL activated earlier
 - Contralateral pelvic limb overloaded (post CCL transection)
 - Evidenced by an increase in VL EMG magnitude and duration

Copyright Caroline Adrian, 2016
Discussion

- Post CCLR
 - Single burst pattern → multiple burst pattern in all three muscles
 - In both treated and untreated limbs
 - More biphasic, inconsistent activation pattern
 - Suggests poorly controlled muscle activation patterns
 - Contribute to poorly controlled joint movements

- Possible cause:
 - Excitatory extensor mechanisms attempting to avoid limb collapse
 - Possible inhibitory extensor mechanisms (instability/effusion present in the stifle)

Herzog W, et.al., *Novartis Found Symp*, 2004
Post MRFE, UnTx, ↓ Avg Hip ROM by 5°

- Change in contralateral kinematic pattern
- Alter neuromuscular control at the stifle
- Destabilize stifle/contribute to contralateral CCLR?
 - Muscles produce/accommodate change in work performed/forces transmitted
 - Thus, activity is modulated in timing/intensity
- Change in kinematic patterns
 - Cause ↓ mm forces acting on knee joint Osternig LR, Med Sci Sports Exerc, 1995
Discussion

Post MRFE
- Delayed VL and BF
- Concomitant early MG
- Gastroc dominance over hamstrings
- Increase load of cranial tibial thrust on CCL
- Predisposes UnTx limb to rupture
 Mostafa AA, et.al., *Vet Surg*, 2010

Untreated Limb

<table>
<thead>
<tr>
<th>Post MRFE</th>
<th>VL</th>
<th>BF</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D/↓</td>
<td>D/↓</td>
<td>E/↑</td>
</tr>
</tbody>
</table>

Copyright Caroline Adrian, 2016
Discussion

Post CCLR

- Increased stance time 6%; Incr stifle/tarsal flexion
- Corroborates ↑ VL and MG activation duration
- Muscle forces primarily determine joint loading
- Humans after ACL rupture
 - Increased knee flexion of ~4°
 - Altered hamstring recruitment Chmielewski TL, J Electromyogr Kinesiol 2005
 - Need + kinesiological EMG data in dogs

Untreated Limb

<table>
<thead>
<tr>
<th></th>
<th>Post CCLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>E/↑</td>
</tr>
<tr>
<td>BF</td>
<td>D/↓</td>
</tr>
<tr>
<td>MG</td>
<td>E/↑</td>
</tr>
</tbody>
</table>

Copyright Caroline Adrian, 2016
Discussion

Post CCLR, UnTx, ↑ Stifle Flexion by 15°

- Altered pelvic limb kinematics—detriment of the contralateral healthy limb?
- Quad activation at 120-140° - produce ↑CCL strain
- Stifle flexion angle >90°
 - Cranially directed tibiofemoral shear force
 Pozzi A, et.al, Plos One 2013
 - 145° (baseline) to 130°-135° (post CCLR)
 - Above the ‘crossover’ point (90° stifle flexion)
 - No change in GRFz in the contralateral pelvic limb
 - Early activation /increased duration of the VL + altered limb kinematics → produce internal changes force/load distribution → contribute to contralateral CCLR?

Tobias and Johnston, Veterinary Surgery Small Animal, 2012

Copyright Caroline Adrian, 2016
Limitations

- Sample Size
- Data collection methods
 - Kinetics: velocity; consistent handler
 - Kinematics: marker location; skin motion;
 - sEMG
 - Normalization
 - MVC not possible
 - Additional studies are needed to improve comparative abilities of EMG
 - Crosstalk
 - Large, superficial muscles used
 - Electrodes near muscle belly midline
 - Acetate sheets
 - Consistent electrode placement
In Summary...

- Qualitative observations
- CCL injury/rupture
 - Effect on neuromuscular function
 - Muscle weakness? (decreased EMG amplitude)
 - Measure of intensity of muscle activity
 - Muscle atrophy?
 - Develop rehab strengthening programs
 - Reduced ability to activate the muscle?
 - Removing inhibitory sources that may prevent or delay muscle activation
 - Focus on neuromuscular retraining programs
- Further characterize muscle activity/altered gait patterns
- Improve understanding of normal, pathologic, surgical and rehabilitative biomechanics of the canine stifle joint
Clinical Relevance

- Dogs compensate for CCL rupture with muscle/kinematic versus kinetic parameters
- No clinical/subclinical methods of detecting CCL injury
- Define rehabilitation exercise protocols targeted at
 - Motor control
 - Proprioceptive training
 - Strengthening
 - Orthotics on affected pelvic limb
 - OA
Future Directions

- MRFE provides a subclinical window to further explore neuromuscular contributions to the pathogenesis of CCL disease
- Influence of compensatory gait on development of contralateral CCL rupture and OA
- Establish appropriate therapeutic interventions and determine their effectiveness
Acknowledgements

- Funding sources
 - Mrs. Jane Emory
 - Eugene V. and Clare E. Thaw Charitable Trust

- PhD committee
 - Kevin Haussler, DVM, DC, PhD
 - Chris Kawcak, DVM, PhD, DACVS
 - Ross Palmer, DVM, DACVS
 - Raoul Reiser, PhD, CSCS, FACSM
 - Wayne McIlwraith, BVSc, PhD, DACVS, DSc
 - Robert Taylor, DVM, DACVS
 - Cheryl Riegger-Krugh, PT, MS, ScD

- Technical support
 - Allison Arne

- Colorado State University Orthopedic Research Center staff
- Colorado State University Small Animal VTH staff
Flexion and extension joint angles (in degrees) of the stifle during stance phase at all time points. (n = 5 dogs)

<table>
<thead>
<tr>
<th>Time</th>
<th>Stifle Flexion</th>
<th>Stifle Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Treated</td>
</tr>
<tr>
<td>Baseline</td>
<td>139.2 ± 3.8</td>
<td>135.9 ± 3.8</td>
</tr>
<tr>
<td>Post MRFE-induced Injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>135.9 ± 4.1</td>
<td>132.1 ± 4.1</td>
</tr>
<tr>
<td>Week 4</td>
<td>133.7 ± 4.1</td>
<td>132.4 ± 4.1</td>
</tr>
<tr>
<td>Post Cranial Cruciate Ligament Rupture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>119.6 ± 4.1*</td>
<td>129.7 ± 4.1</td>
</tr>
<tr>
<td>Week 8</td>
<td>122.0 ± 3.8*</td>
<td>126.1 ± 3.8*</td>
</tr>
<tr>
<td>Week 16</td>
<td>126.2 ± 3.8*</td>
<td>129.8 ± 3.8</td>
</tr>
</tbody>
</table>

Copyright Caroline Adrian, 2016
Tarsocrural flexion joint angles (in degrees) and timing of tarsocrural joint extension (% of stride) during stance phase at all time points. (n = 5 dogs)

<table>
<thead>
<tr>
<th>Time</th>
<th>Tarsocrural Flexion</th>
<th>Tarsocrural Extension (% of Stride)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Treated</td>
</tr>
<tr>
<td>Baseline</td>
<td>114.1 ± 4.1</td>
<td>111.8 ± 4.1</td>
</tr>
<tr>
<td>Post MRFE-induced Injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>116.3 ± 4.5</td>
<td>114.2 ± 4.5</td>
</tr>
<tr>
<td>Week 4</td>
<td>111.1 ± 4.5</td>
<td>117.7 ± 4.5</td>
</tr>
<tr>
<td>Post Cranial Cruciate Ligament Rupture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>99.8 ± 4.5*</td>
<td>124.9 ± 4.5*†</td>
</tr>
<tr>
<td>Week 8</td>
<td>99.6 ± 4.1*</td>
<td>119.1 ± 4.1†</td>
</tr>
<tr>
<td>Week 16</td>
<td>104.5 ± 4.1</td>
<td>118.8 ± 4.1†</td>
</tr>
</tbody>
</table>
Results - Post CCL Rupture

Kinetics

- **Tx:** Decreases in majority of parameters post CCLR

Kinematics

- **Tx:**
 - Incr avg hip joint ROM
 - Incr tarsal extension

- **UnTx:**
 - Increased avg stifle ROM (up to 10º)
 - Increased stifle flexion (up to 20º)
 - Increased avg tarsal ROM (up to 16º)
 - Increased tarsal flexion (up to 14º)
 - More flexion at stifle and tarsus
Stifle Kinematics

Treated Limb

Copyright Caroline Adrian, 2016
Stifle Kinematics

Untreated Limb

Post MRFE

Post CCL Rupture

Copyright Caroline Adrian, 2016